

The Habitable Exoplanet Observatory (HabEx) Decadal Mission Study

Gary M Kuan, Ph.D. – HabEx Design Lead Jet Propulsion Laboratory, California Institute of Technology

> AIAA Space 2018 September 17, 2018

Study Goals

"Develop an optimal* mission concept for characterizing our nearest planetary systems, and detecting and characterizing a handful of ExoEarths."

"Given this optimal* concept, maximize the astrophysics science potential without sacrificing the primary exoplanet science goals."

*What does optimal mean?

- Maximizing the science yield while maintaining feasibility, i.e., adhering to expected constraints.
- Constraints include: Cost, technology (risk), time to develop mission.

Science Goals

Seek out nearby worlds and explore their habitability

Map out nearby planetary systems and understand their diversity.

Pre-Decisional - For Planning Purposes Only

Enable new explorations of systems in the UV to near-IR

Exoplanet Detection and Characterization

Coronagraph detects:

Star system at 7.5 pc, orbital inclination 60 deg, 0.45-0.55µm, 1.5x1.5 asec FOV

- (a) exo-Earth analog (1 AU)
- (b) Sub-Neptune analog
- (c) Jupiter analog

Credit: G. Ruane.

Starshade characterization first with Visible, followed by far-UV and near-IR

Starshade characterizes:

Same as above, except with 11.9 x 11.9 asec FOV revealing outer planets and dust belt:

- (a) exo-Earth analog
- (b) sub-Neptune analog
- (c) Jupiter analog
- (d) Saturn analog
- (e) Neptune analog

Credit: S. Hildebrandt

HabEx is expected to detect 200+ exoplanets:

92 rocky planets, ~12 Earth analogs,

116 sub-Neptunes, 65 gas giants.

*based on SAG13 occurrence rates for each planet size and stellar insulation level.

Occurrence rates estimates are highly uncertain for cold planets.

Pre-Decisional - For Planning Purposes Only

Next Generation Guest Observatory

	Ultraviolet Spectrograph (UVS)		
Field-of-view	3 x 3 arcmin ²		
Wavelength bands	20 bands covering 0.115 to 0.3 µm		
Spectral resolutions	60,000; 25,000; 12,000; 6,000; 3,000;1,000; 500		
Telescope resolution	Diffraction limited at 0.4 µm		
Detector	3x5 MCP array, 100mm sq each		
Array width	17,000 x 30,000 pixels (pores)		
Microshutter array	2x2 array of 171x365 200x100 µm apertures		

Solar System Aurorae

HolbEx /

Next Generation Guest Observatory

	100	
HabEx Workhorse Camera (HWC)	UV/Vis Channel near-IR Chan	
Field-of-view	3 x 3 arcmin ²	3 x 3 arcmin ²
Wavelength bands	0.15 – 0.95 µm	0.95 – 1.8 μm
Spectral resolution	2000	2000
Telescope resolution	30.9 mas 49 mas	
Detectors	3x3 CCD203	2x2 H4RG10
Array width	12,288 pixels	8,192 pixels
Microshutter array	2x2 arrays; 200x100 µm aperture size; 171x365 apertures	

Exoplanet Transit Spectroscopy

Habex Architecture A Concept Name

- The HabEx STDT chose these parameters for Architecture A:
 - Telescope with a 4m aperture
 - 52-m diameter, formation flying external Starshade occulter
 - Four instruments:
 - Coronagraph Instrument for Exoplanet Imaging
 - Starshade Instrument for Exoplanet Imaging
 - UV Near-IR Imaging Multi-object Slit Spectrograph for General **Observatory Science**
 - High Resolution UV Spectrograph for General Observatory Science

- Mission duration:
 - 5 years,
 - consumables for 10 years
- Orbit: Sun-Earth L2 Halo
- Bandpass:
 - Far UV through Near IR (115nm 1800nm)
- Defined Exoplanet Science Program: ~50%
- GO/General Astrophysics Science Program: ~50%
- Telescope Flight System is serviceable
- Starshade Flight System may be refuelable (but otherwise not serviceable)
 - Degradation due to micro-meteoroids
- Capable of non-sidereal tracking of planetary objects

Instrument Specs

Cameras	Blue Channel	Red Channel	IR Channel
FOV	1.5 asec	2.2 asec	3.1 asec
Wavelength bands	0.45–0.55 μm 0.55–0.67 μm	0.67–0.82 μm 0.82–1.0 μm	0.95–1.8 μm
Pixel resolution	11.6 mas	17.3 mas	29.9 mas
Telescope resolution	23 mas @ 0.45μm	35 mas @ 0.67μm	49 mas @ 0.95μm
IWA (2.4 λ/D)	56 mas @ 0.45μm	83 mas @ 0.67μm	118 mas @ 0.95μm
OWA	0.74 asec	1.11 asec	1.57 asec
Detector	1×1 CCD201	1×1 CCD201	1×1 LMAPD
Array width	1024	1024	256×320
Spectrometers	Blue Channel	Red Channel	IR Channel
FOV	1.5 asec	2.2 asec	3.1 asec
Spectrometer resolution $\lambda/\Delta\lambda$	140	140	40
Spectrometer type	IFS	IFS	Slit
Detector	1/4 CCD282 (EMCCD)	1/4 CCD282 (EMCCD)	1×1 LMAPD
Array width (pixels)	2048	2048	256×320
Deformable mirror	64×64 0.4 mm pitch	64 × 64 0.4 mm pitch	64×64 0.4 mm pitch

High Resolution UV Spectrograph		
FOV	3 amin x 3 amin	
Spectral bands	20 bands covering 0.115 to 0.3 μm	
Spectral resolution	60,000	
Telescope resolution	400 nm diffraction limit	
Detector array width	3x5 MCP array, 100mm sq each 17,000 x 30,000 pixels (pores)	
Microshutter aperture array	2x2 array of 171x365 200x100µm apertures	

Coronagraph

Starshade

UVS

HWC

Science Band	UV	Visible	IR
Bandpass	0.2-0.667μm	0.3-1.0μm	0.54-1.8μm
Separation	114,900 km	76,600 km	42,500 km
IWA (@ longest λ)	47 mas	70 mas	126 mas
Cameras	UV Channel	Visible Channel	IR Guide Channel
FOV	10.2 asec	11.9 asec	-
Bandpass	0.2-0.45µm	0.45-1.0μm	0.975-1.8μm
Pixel resolution	14.2 mas	14.2 mas	12 cm (lateral)
Telescope resolution	21 mas	21 mas	-
IWA (@ longest λ)	47 mas	70 mas	126 mas
Detector	1x1 CCD201	1x1 CCD201	1x1 LMAPD
Array width (pixels)	1024	1024	256
Spectrometer	UV Channel	Visible Channel	IR Guide Channel
FOV	10.2 asec	1.9 asec	3.8 asec
Bandpass	0.2-0.45μm	0.45-1.0μm	0.975-1.8μm
Spectral resolution	7	140	40
Spectrometer type	Slit/grism	IFS	IFS
Detector	1x1 CCD201	1x1 CCD282	2x2 LMAPD
Array width (pixels)	1024	4096	2048

HWC	UV/Vis Channel IR / Vis Channel	
FOV	3 amin x 3 amin 3 amin x 3 amir	
spectral bands	0.95 - 1.8 μr (goal: 2.5μm	
Pixel resolution	15.5 mas	24.5 mas
Telescope resolution	30.9 mas	49 mas
Design wavelength	0.6 μm	0.95 μm
Detector	3x3 CCD203 2x2 H4RG10	
Detectror array width	12,299 pixels	8,192 pixels
Spectral resolution	2000	2000
Microshutter array	2x2 array of 171x365 200x100μm apertures	

Holbex,

Key Features:

- These features are "game changers" that enable this observatory concept:
 - SLS Block 1B Launch Vehicle with 8.4m x 27.4m Fairing
 - Characteristic: Increased mass and volume launch capability over existing LVs
 - Benefit: Allows the use of mass and volume to minimize complexity and therefore reduce risk and cost
 - Microthrusters
 - · Characteristic: Extremely low mechanical disturbance noise
 - Benefit: Significantly improves pointing stability, simplifies structural dynamics design, improves telescope wavefront stability
 - Vector Vortex Coronagraph (VVC)
 - Characteristic: much less sensitive to low order wavefront aberrations with high throughput
 - Benefit: Reduces the need for an ultra stable telescope.
 - Starshade occulter
 - Characteristic: allows for a small inner working angle (IWA) over a broad spectral band
 - Benefit: Allows a 4m telescope to have an IWA equivalent to a much larger one, in this case: 7.1m telescope @ λ=1μm

HolbEx /

Why the SLS?

- Keep it simple!
- Use mass and volume to minimize complexity:
 - Minimize deployments
 - Fewer mechanisms and control electronics.
 - Use volume for a 4m unobscured, offaxis telescope with Instruments on the side (not under the PM).
 - Use mass for a monolithic Zerodur® primary mirror.
 - CBE: 1295kg, 80Hz first mode
 - very high thermal inertia for stability

from HabEx interim report URS273294

Key Specifications of Block 1B Cargo with 8.4m PLF, Long Concept:

- 7.5m inner diameter fairing
- 25.83m total useable inner height
- ~36,000kg (minimum) to Sun-Earth L2

Less complexity = less risk & less cost

Holbex

Telescope Flight System Baseline Architecture

- Telescope Flight System:
 - Off-axis Three Mirror Anastigmat (TMA) telescope
 - 4-m monolithic primary mirror
 - Laser metrology and control truss
 - Four Science Instruments:
 - Coronagraph Imager w/spectrograph
 - Starshade Imager w/spectrograph
 - Workhorse Camera w/spectrograph
 - High Resolution UV Spectrograph
 - Attitude Determination and Control:
 - Fine Guider Subsystem w/four sensors
 - · Microthrusters for fine pointing
 - Monoprop thrusters for slewing
 - Phased Array Antenna for communications
- Hubble Heritage:
 - Telescope coating: MgF2 / Al (same as HST)
 - Telescope/Instrument bandpass: 115nm 1800nm (as high as 2.5μm)
 - 3x the collecting area as Hubble

Telescope Flight System: Exploded View (Baseline)

Key Telescope Requirements

The coronagraph instrument drives telescope requirements:

Coronagraph Requirement		Telescope Requirement		
Inner working angle (IWA) @ 500nm	62mas	Aperture diameter	4m	
Contrast	≤1x10 ⁻¹⁰	Primary mirror f/#	f/2.5	
		Diffraction limit wavelength	400nm	
		Quasi-static WFE	30nm rms	
Maximize throughput		Primary mirror type	monolith	
		Unobscured pupil	off-axis TMA	
Contrast stability	≤2x10 ⁻¹¹	Pointing stability	≤2mas/axis	
		WFE stability	<1nm rms / 50hrs	

Hobex

Why Vector Vortex Coronagraph?

Purpose:

 to maximize planet light throughput and contrast and minimize requirements on the telescope

Benefit:

Much less sensitive to low order telescope WFE

Rationale:

- Very good throughput and contrast:
 - on par (theoretically) with Hybrid-Lyot Coronagraphs (HLC) or other coronagraph types
- Forgiving:
 - rejects low order Zernike WFE terms in its null space.
 - ~500pm rms instead of ~10pm rms stability
- Demonstrated in the lab (though not to the level required for space)
- Demonstrated on ground-based telescopes (Subaru, Palomar, VLT, Keck)
- Further development on-going in HCIT at JPL

VVC6 IWA = $2.4\lambda/D = 62$ mas @ 500nm

A charge 6 liquid crystal polymer vector vortex mask as seen through crossed polarizers.

Why Microthrusters?

Purpose:

- To maintain pointing during observations
- To offset solar pressure induced torque on the telescope.

• Background:

- Solar pressure ~1.5µN/m² at Sun-Earth L2.
- HabEx has ~100m² projected area,

Rationale:

- Two flight proven microthrusters to choose from: cold gas and colloidal electrospray
 - Colloidal electrospray thrusters (NASA ST7) have flown on ESA LISA Pathfinder and are planned for ESA's LISA mission.
 - · Cold gas thrusters are currently flying on ESA Gaia.
- Colloidal Microthrusters (baselined) have sufficient thrust capability:
 - 5-30µN for each thruster head on ST7
 - Max thrust may increase to 60μN for LISA
 - thrust resolution ≤0.1µN
- Significantly less noise than reaction wheels (≤0.03µN/rtHz over all frequencies)
- Potentially higher reliability than reaction wheels
- · Simplifies structural dynamics design, analysis, and testing
- · Potentially no payload/spacecraft isolation.

Units: μN/rtHz

Thruster noise PSD plot for colloidal microthrusters. Max noise above 10⁻³ is likely due to thrust-balance sensor noise limits.

(ref: "Colloid Micro-Newton Thrusters For Precision Attitude Control", John Ziemer, et. al, Apr 2017, CL#17-2067)

Units: N²/Hz

Waterfall plot derived from measured data showing Ithaco B-wheel Fx data and the radial force model (reference: "Conditioning, Reduction, and Disturbance Analysis of Large Order Integrated Models for Space-Based Telescopes"

By Scott Alan Uebelhad, MIX

Payload / Spacecraft / Launch Vehicle Interface

1) Interface Ring intersects with the payload, spacecraft, and launch vehicle

2) Interface ring incorporated into the spacecraft

Pre-Decisional - For Planning Purposes Only

3) Payload sits directly on the interface ring, such that the spacecraft doesn't support the payload mass

Holbex

Why a Starshade?

- A starshade is designed for <1x10⁻¹⁰ contrast from the IWA+ over a wide spectral band.
- For HabEx:
 - Coronagraph @ 500nm, D=4m (Tel dia)
 - IWA = $2.4\lambda/D = 62$ mas
 - 52m Starshade @ 76,600km
 - IWA = 70mas over 300nm 1000nm
 - For Coronagraph IWA=70mas @1000nm would require D = 7.1m

- The Starshade is slow to retarget, but is very good at deep spectral characterization at IWA with no OWA.
- The coronagraph is fast to retarget, but is only able to detect 500nm at IWA, and is limited by OWA
- These two exoplanet instruments are complementary.
- Starshade technologies are being developed by the Exoplanet Exploration Program
- A Starshade is planned for a rendezvous with WFIRST

Starshade Flight System (Baseline)

- 52-meter diameter (tip-to-tip)
 - 20-meter diameter central disk
 - 16-meter petals (x 24)
 - Vis: 300nm 1000nm, 76,600km, 70mas IWA (nominal)
 - UV: 200nm 667nm, 114,900km, 47mas IWA
 - NIR: 540nm 1800nm, 42,500km, 126mas IWA
- Solar Electric Propulsion (SEP) Hall Effect thrusters
 - 2 flight + 1 spare, each side (6 total)
- Bi-prop hydrazine thrusters
 - ACS
 - Orbit maintenance

- Communications
 - X-band to ground, 1kbps, command & ranging
 - S-band to telescope, 100bps, data transfer & ranging

Truss Deployment

5. Deployed Starshade

3. Petals rotate 90-deg (tangential to radial)

1. Stowed

2. Petals unfurl

Starshade Flight System (Baseline) Exploded View

- 52m diameter Starshade deploys radially from Hub exterior
- PLUS (Petal Launch Restraint & Unfurler Subsystem)
 - deploys the Starshade occulter (jettisoned after use)
- Starshade Bus fits within the Starshade Hub
- Bus Includes:
 - Solar Electric Propulsion (SEP) Hall effect thrusters
 - 2 Flight / 1 Spare (on each end)
 - Bi-prop chemical thrusters
 - Communications, with ground & telescope
 - Formation Flying beacon
 - Electronics
 - Solar Array (2 sets)
 - 1 rigid array on end of hub
 - 1 flexible CIGS array starshade disc when deployed
 - Thermal Control
- Starshade is spin-stabilized at 0.33 RPM
 - allows starshade occulter temperature to be passively controlled
- Communications same as telescope (w/o extra 1Tb storage)

Bi-prop thrusters

Star-tracker

Gimbaled SEP thrusters

Rigid solar array

Holbex Technology/Engineering Needs

Technology:

- ≤10⁻¹⁰ contrast Coronagraph, with ≤2x10⁻¹¹ contrast stability
 - Including deformable mirrors
- Starshade petal shape deployment accuracy
- Starshade petal shape and position stability

Engineering:

 Demonstrate fabrication of a 4m monolithic primary mirror for space with existing capabilities

Summary

- HabEx takes advantage of existing (or developing) technologies to achieve compelling science:
 - SLS Block 1B launch vehicle
 - Reduces complexity and technical risk (and cost)
 - Vector Vortex Coronagraph Charge 6
 - Relaxes telescope quality and stability requirements compared to other coronagraphs
 - Microthrusters
 - Significantly reduces mechanical noise
 - Simplifies structural dynamics design, analysis and test
 - Starshade
 - Allows for a smaller telescope (4m instead of 8m) to achieve the same level of exoplanet characterization over a broad spectral band
 - A smaller starshade design (~52 m) is being developed to improve technology readiness.